Simulation of Dispersion of Heavy Particles in Confined Turbulent Flows

The turbulent dispersion of particles is of major importance in
such diverse applications as liquid fuel and coal combustion, re-
action quenching in (for example) petroleum chemistry, sediment
transport in rivers and gas-solid separation in cyclones. In recent
years there has been increased emphasis on the development of
mathematical models to predict the behavior of particles and/or
droplets in turbulent flows and these can be grouped under the two
categories of Eulerian and Lagrangian methods. In the Eulerian
approach (Gibson and Morgan, 1970) a conservation equation for
the mass fraction of particles is derived and solved along with the
governing equations of fluid motion under the assumption that the
particles move with the gas. Although the problem of inequality
of the diffusion coefficients of fluid parcels and heavy particles has
recently been addressed (Berlemont and Gouesbet, 1982), the
no-slip approximation has been retained. In the Lagrangian ap-
proach a representative number of individual particle trajectories
are calculated within the Eulerian gas flow field, which is obtained
either experimentally or through the solution of the governing
equations of the gas phase complemented by a suitable turbulence
model (Sumer, 1973; Gosman, 1981). The results of the large
number of particle trajectory calculations are ensemble averaged
to give the particle concentration distribution defined in the Eu-
lerian sense.

This paper describes the application of a Lagrangian formulation
to experimental situations both in pulverized coal burners reported
by Thurgood et al. (1980) and the case of particle-laden cold flow
of Tice and Smoot (1978) to validate the physical modelling.

NUMERICAL SIMULATION

When all external forces except for the drag force are neglected,
the equations of motion of a small particle in a gaseous environment
:can be expressed in a Lagrangian frame of reference as

duy/dt = —« (up — ) (1)
dvp/dt = —= (v, — 8) + wi/ry 2)
dw,/dt = —= (w, — ®) — vpw,/1p (3)
« = (18u/ppDE)(CpRe/24) (4)

where u,, v,, w, and 4, §, @ are the instantaneous components of
the particle and gas velocities respectively-in the x, r and 8 direc-
tions of a cylindrical polar system of coordinates.

These equations are supplemented by the following which de-
scribe the instantaneous location of the particle

dxp/d$p =u,, drp/dt =v,, db/dt =wy/r, 5)

where x,,, 7, and 8, are the space co-ordinates.
The drag coefficient Cp is expressed as a function of the relative
Reynolds number with the general form

Cp =a; + az/Re + az/Re? (6)

where the a’s are given for several ranges of Reynolds number by
Morsi and Alexander (1972) so that Stokes regime is obeyed for Re
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< 0.1 and for 0.1 < Re < 1.0 the a’s taking the value 3.69, 22.73
and 0.0903 respectively.

To account for the effects of turbulence on the trajectories of
individual particles the instantaneous gas velocity ¢ is decomposed
into time-mean and fluctuating components u; and u;. It is assumed
that the fluctuating velocity prevails, on average, for a time period
equal to the life time of the fluid eddy that the particle is traversing,
which can be expressed in"terms of the local kinetic energy of
turbulence, k, and its dissipation rate € as (Hinze, 1975).

T~ 0.165 (7)
€

The values of the fluctuating velocities can be assumed to possess
a Gaussian distribution so that these are related to the root mean
square fluctuations by

u; = WHV2 = ¢ ()2 (8)

where ¢ is a normally distributed random variable and u; repre-
sents the fluctuating components of velocity in the 7, x and  di-
rections, the overbar indicating time averaging.

SOLUTION PROCEDURE

The information required to carry out the simulation described
above, namely the local values of the flow variables and turbulence
quantities have been obtained from the solution of the governing
equations of conservation of mass and momentum in the gas phase.
These equations can be expressed for brevity in Cartesian tensor
notation as

)

o, pu; 9)
2 ou ==L 4+ Ll | 4+ F 10
o, Pt on, T o5 (u £ axj) + F; (10)

where p is the pressure, p the gas density and p the effective
viscosity which is the sum of laminar and turbulent viscosities, u
and .. Here, F; stands for the momentum sources or sinks arising
from the interaction between the gas and the solid particles. Tur-
bulence is modelled by the widely used k-€ model which entails
the solution of a transport equation for the kinetic energy of tur-
bulence k and another for its dissipation rate €, which are given

by
o puk = 0 (ﬂ O_k) e (_aﬂ %) ous _ pe (1)

bxj B b—x] Ok bx] Oxi * Ox,' an
0 O fu, Oc
—pue=—|2t 2 4 ¢
bxj P bxj (0’5 bx]) + Gk
Ou;  Ouy\ du, € €2
X| =+ =L == Cop=— (12
(bxj bx,-) ox; k 20 k (12)
and the turbulence viscosity g, is obtained from
k2
My = Cp.p ?’ (13)

AIChE Journal (Vol. 30, No. 3)



where C), Cg, C,, 0% and o, are constants which are given the
values C; = 1.44, C; =192, C, = 0.09, 0; = 1 and o, = 1.3.

The above set of partial differential equations (Eqs. 9-12) have
been reduced into algebraic form by integration over the finite
volumes into which the solution domain is subdivided. The velocity
components and pressure at each control volume are calculated,
using the SIMPLE algorithm (Patankar, 1980), iteratively on a
digital computer.

Once the details of the flow field are known, it is possible to
perform the particle trajectory calculations by integrating the
equations of motion. Using a sampled value of the fluctuating gas
velocity, as defined in Eq. 7, treating the body force terms in Egs.
2 and 3 as constant over a short time interval, we can obtain closed
form expressions for u,, v, and wy, as follows:

Up =U+ u' + (up, —u —u') expj—=(t —1,)]  (14)

2 2
_ w — w
vp =0+ 0+ —E 4 (vp,o -o-v —-—”—) exple(t — to)]

Tp.o xTpo
(15)
wy, =W + w — Ypolo
<Tpo
_ , o Vo op,
+ |Wpo —W —w + —‘”—P—;T =|expl—«(t —t,)] (16)
P,0

where the subscript ¢ pertains to the conditions at the beginning
of the time step. The location of the partial is obtained by simple
stepwise integration of the equations of trajectory (Eq. 5).

The calculation of a large number of particle trajectories yields
the distribution of particles, and thus particle concentration,
throughout the domain of interest.

RESULTS AND DISCUSSION

Comparisons have been made with published experimental re-
sults for particle mass fluxes by simulating an isokinetic sampling
probe during the computational run. The stochastic nature of this
technique is responsible for the scatter in the computed points.

Figure 1 is a comparison between computations and the exper-
imental results of Tice and Smoot (1978) for a 0.2 m diameter
mixing chamber into which silicon powder of 54.1 um mean di*
ameter was injected in lieu of coal, so that the experiment was
isothermal. The experiment is described in Tice and Smooth (1978)
as test 4b.

Figure 2 shows comparison between a reacting flow case re-
ported by Thurgood et al. (1980) as “Condition A” for a 0.2 m di-
ameter vertical combustion chamber and isothermal flow nu-
merical test. The shape of the experimental curve is well repro-
duced even by nonreacting simulation. It must be pointed out that
no effort was made to extend the numerical experiment beyond
normalized axial locations larger than 100, to avoid complications
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Figure 1. Axial profiles of normalised particle mass flux.
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Figure 3. Particle residence time distribution curves.

arising from particle swelling and combustion effects. The incor-
poration of the coal particle combustion model of Baum and Street
(1971) into the model is in progress.

As with any fundamentally based computer simulation, once
a solution is determined a large number of parameters of both the
gas and solid phases are accessible. Of particular interest here is the
particle residence time distribution at various axial locations and
Figure 3 shows results for two such locations. These residence time
distributions show the expected slightly skewed distribution since
the mixing chamber considered in this study can be approximately
described as a series of tubular and well-stirred reactors.

NOTATION
ayag,as = coefficients in Eq. 6
Cp = drag coefficient
C,,C5,C, = constants in the turbulence model
p = particle diameter
k = kinetic energy
Re = pD,|u, —ul/u, relative Reynolds number

May, 1984

Page 491



t, = radius of primary stream tube (Figures 1-3) in-
stantaneous radial location of particles

t =time
Up,0pwp = instantaneous components of the particle ve-
locity
u’ v’ w’ = fluctuating components of gas velocity
@,0,i0 = instantaneous components of the gas velocity
w,r,f = directions of a cylindrical polar system
z = distance from chamber inlet

Greek Letters

o = defined by Eq. 4
p = gas density
pp = particle density
Hett. i,y = effective, laminar and turbulence viscosities
= rate of dissipation of turbulence energy
¢ = normally distributed random number
7 = lifetime of a fluid eddy
Ok, 0 = constants in the turbulence model
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Comments on the Paper, “Gas Transport through Polyethylene

Membranes’’

In “Gas Transport through Polyethylene Membranes,” [AIChE
J., 28,474 (1982)] Soles et al. described a procedure for determining
both the Henry’s Law Constant, H, and the diffusivity, D, which
characterize gaseous transport through a polymer membrane. In
their experiments, a polymer membrane (either high- or low-
density polyethylene) was placed between two reservoirs con-
taining a pure gas initially at different pressures. By assuming
one-dimensional diffusion through the membrane, uniform mixing
within the reservoirs and equilibrium at the gas-polymer interface,
a relationship was derived between D and H and the temporal
variation in pressure drop across the membrane. The objectives of
their study were threefold:

1) Find a solution to the one-dimensional diffusion equation
with the pressure in both reservoirs allowed to vary with time.

2) Find a solution to the one-dimensional diffusion equation for
their experimental conditions in which the pressure in one reservoir
was essentially constant.

3) Demonstrate a procedure for employing the latter solution
to estimate H and D for gaseous transport through a polymer
membrane. Soles et al. (1982) determined H and D for the trans-
port of Argon through high- and low-density polyethylene.

Soles et al. (1982) were unable to find a general solution to the
problem of one-dimensional diffusion between well-mixed reser-
voirs and instead reported a solution valid only for short times
(Dt/L2% « 1). However, solutions for all time are available (Spacek
and Kubin, 1967; Shair and Cohen, 1969). The experimental
analysis of Soles et al. (1982) was based on the assumption that the
pressure in the larger reservoir (the high-pressure reservoir) was
essentially constant. While the author’s assumption was apparently
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valid for their experiments, this assumption is not required for
analysis of the data. Reible and Shair (1982) employed the solution
developed by Shair and Cohen (1969) to determine diffusivities
in porous media in an apparatus similar to that employed by Soles
et al. (1982). This approach can also be applied to evaluate both
H and D in diffusion through polymer membranes and would not
be subject to the limitations of the approach by Soles et al. (1982).
The objective of the present paper is to outline the application of
the solution of Shair and Cohen (1969) to this problem.

PROCEDURE

It is assumed that at time zero a pressure difference is applied
across a polymer membrane of length, L, and cross-sectional area,
A. The difference in pressure is measured in well-mixed reservoirs
of volume V1 and V4, on each side of the membrane. At any time,
the concentration of the dissolved gas at the edge of the polymer
membrane, C,,(0,t) [or C,n(L,t)], is in equilibrium with the res-
ervoir pressure, P; [or P3), according to the following relation-
ships

Py{t) = RTC,\(t) = RTHC,,(0,t) (1)
Polt) = RTCsft) = RTHC,,(L,t) {2)

where H is a Henry’s law constant.
In addition, at time zero the dissolved gas concentration throughout
the membrane is assumed to be in equilibrium with the pressure
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